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The fundamental function of a cellular manufacturing system (CMS) 
is based on the definition and recognition of a type of similarity 
among parts that should be produced in a planning period. Cell 
formation (CF) and cell layout design are two important steps in 
implementation of the CMS. This paper represents a new nonlinear 
mathematical programming model for dynamic cell formation that 
employs the rectilinear distance notion to determine the layout in the 
continuous space. In the proposed model, machines are considered 
unreliable with a stochastic time between failures. The objective 
function calculates the costs of inter- and intra-cell movements of 
parts and the cost due to the existence of exceptional elements (EEs), 
cell reconfigurations, and machine breakdowns. Due to the 
problem’s complexity, the presented mathematical model is 
categorized in NP-hardness; thus, a genetic algorithm (GA) is used 
for solving this problem. Several crossover and mutation strategies 
are adjusted for GA and parameters are calibrated based on Taguchi 
experimental design method. The great efficiency of the proposed GA 
is then demonstrated by drawing a comparison between particle 
swarm optimization (PSO) and the optimum solution via GAMS 
considering several small/medium- and large-sized problems.. 

  © 2018 IUST Publication, IJIEPR. Vol. 29, No. 2, All Rights Reserved 
 

1. Introduction1 
In today’s world, due to the enhancements in 
the customer’s power of choice and extension 
of competitive markets, organizations are 
required to reform their structures. Group 
technology (GT) is a production philosophy 
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that aims to determine, categorize, and assign 
parts to groups and part families; also, it assigns 
machines to cells to produce these part families. 
This process is based on the part characteristics 
and their similarities in the production process, 
design and geometrical characteristics.  
A cellular manufacturing system (CMS), which 
is the most important application of GT, 
overcomes the inefficiency of traditional 
approaches through reduction in transportation 
time and distance. A flow shop layout has high 
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efficiency in a mass production system, while a 
job shop is a very flexible system for producing 
various parts. In fact, each of these systems 
does not have any other benefits. The CMS is 
an approach between these two manufacturing 
systems that aims to improve flexibility and 
efficiency to produce manufacturing groups in 
different sizes. 
In a CMS, machines and parts assignment to 
cells must impose minimum cost on the 
system. After determining the assignment to 
machines and parts, machines’ locations must 
be determined. This issue is referred to as cell 
layout (CL). 
However, the layout design in a CMS has not 
been paid much  attention, since most of the 
relevant studies in the literature only 
investigate the CFP [1, 2]. As stated by Alfa et 
al. [3], facility layout and CF problem 
decisions are interrelated, and addressing them 
simultaneously is very important for a 
successful CMS design. However, each of 
these decisions is proven to be complex [4, 5]. 
Therefore, the simultaneous addressing of these 
decisions is a more difficult issue.  
On the other hand, it seems that demand and 
product mix will continuously change with a 
lower product lifecycle and shorter time 
distances to present the product [6]. 
Wemmerlov and Hyer [7] stated that a demand 
for the products, produced in manufacturing 
cells, is not so much predictable. As a result, 
planning horizon can be segmented to smaller 
periods. Therefore, each period has its own 
demand and product mix. In this situation, we 
are faced with dynamic manufacturing or 
dynamic environment requirements. It has to be 
said that, in a dynamic situation, the demand 
and product mix in each period can be different 
and certain. 
For a prosperous design, planning must be 
done over time for all the periods with respect 
to the variations. Variations in cell structure 
within planning periods may include 
exchanging the machines between the cells, 
adding new machines to the cells, eliminating 
the machines from the cells, and relocating the 
machines in the cells. In previous studies, for 
locating the machines in manufacturing cell 
space, line formed locations were the only 
consideration and the machines were assigned 
to these positions. It is obvious that if assigning 

the number of machines to a cell cannot be 
formed, it turns into a U form that imposes 
additional costs on the system. With respect to 
this point, using the concept of distance in 
order to calculate the amount of parts’ 
relocations between two or more machines in a 
cell rather than considering positions for 
assigning the machines to manufacturing cells 
can make the problem actual and can ease the 
costs calculation. 
Furthermore, traditionally, CF problems are 
performed assuming that all the machines are 
100% reliable. However, machines that are the 
key elements in manufacturing systems break 
down most of the times, and it is not possible to 
repair them as quickly as the production 
requirements dictate. Their breakdown can 
affect system performance and cause some 
manufacturing problems. Machine failures 
should, hence, be taken into account during the 
design of CMS to improve the overall 
performance of the system. However, any 
attempt at improving the reliability of a system 
results in higher costs. Therefore, an 
optimization approach that integrates cost and 
reliability considerations is the most 
appropriate policy to achieve an optimum 
balance [8].  
This paper proposes a model that concurrently 
considers cell formation and facility layout 
problems that incorporates machine reliability 
and cost considerations to develop an effective 
CMS in dynamic conditions. To achieve this, a 
new mathematical nonlinear programming 
model for dynamic cell formation, employing 
the rectilinear distance concept to determine 
layout in a continuous space, is presented in 
this study. To increase the accuracy of the 
inter- and intra-cell layouts, the material 
handling cost is calculated based on the actual 
location of machines and cells on the shop 
floor considering machine dimensions and aisle 
widths. A target function accurately calculates 
the costs of inter- and intra-cell relocation for 
parts. In addition, the cost of cell 
reconfiguration and EEs is calculated. In an 
accurate cellular layout, cells and machines 
should not be overlapped. However, in a 
number of research bodies, machines located in 
each position can be assigned to any of the 
cells without any restrictions [9]. The model 
proposed in this paper prevents cells and 
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machines from being overlapped by imposing 
some restrictions on assigning machines to 
cells and cells to shop floor. Furthermore, 
machine reliability and cost considerations are 
incorporated in the proposed model. Since 
machine reliability has a probabilistic nature, it 
is assumed that time between failures follows 
an exponential distribution. Therefore, the 
number of breakdowns for each machine 
follows a Poisson distribution with a known 
failure (i.e., breakdown) rate. 
The remainder of the paper is organized as 
follows. In the next section, the relevant 
literature is reviewed. Section 3 describes 
proposed model and explains reliability 
considerations in the design of CMS. In 
Section 4, the proposed genetic algorithm is 
introduced. The PSO is introduced in Section 5. 
Some numerical examples and comparing the 
results are presented in Section 7 in order to 
demonstrate the methodology. Finally, 
conclusion and future research are given in 
section 8. 
 
Literature Review 
Studies conducted in dynamic cell formation 
can be categorized as follows: 
 Studies that propose appropriate models in 

cellular manufacturing systems with 
respect to production information and 
solve the model by employing accurate or 
heuristic algorithms. 

 Studies that attempt to propose new 
approaches including existing accurate or 
heuristic models and comparing different 
solving methods. 

 Studies incorporating reliability 
consideration in designing CMS. 
 

2-1. Studies based on the proposing models 
The most popular studies conducted in 
designing dynamic CMS (DCMS) are as 
follows. Kannan and Ghosh [10] examined a 
DCMS in terms of scheduling, and illustrated 
that simpler scheduling can be achieved 
thorough DCMS. They also examined the 
impacts of the DCMS on preparation time, 
flow time, and work-in-process. Balakrishnan 
and Cheng [11] proposed a flexible two-step 
method to solve the cell formation problem 
with respect to demand variations using 
dynamic programming and machine 

assignment. The first phase contains assigning 
machines to each period, and the second phase 
of the method is to employ dynamic 
programming for designing within planning 
periods. Rheault et al. [12] proposed the idea of 
dynamic cell manufacturing to overcome the 
flexibility reduction in designing a CMS. They 
considered the demand and product mix in each 
period as a constant and certain value. Their 
objective function is to minimize the total inter-
cell relocation costs and cell restructuring with 
constraints of capacity of cell space and 
common quadratic assignment problem (QAP) 
constraints. Bulgak et al. [13] proposed a new 
mathematical model for designing a DCMS. In 
addition to considering inter-cell relocation, 
cell restructuring, and cell capacities, this 
model considers assumptions, such as level of 
inventory in each period, intra-cell relocation, 
maintenance costs, and subcontracting. 
Schaller [14] proposed a mathematical model 
for a CF problem considering demand 
variations within the periods. 
Wicks and Reasor [15] proposed a 
mathematical model for designing a dynamic 
manufacturing cell system based on part family 
and machine grouping. The objective function 
is to minimize the total inter-cell relocation 
costs, fix costs of machine purchasing and cell 
restructuring costs with constraints of machine 
capacity and lower bound of cells capacity. 
Chen [16] presented the DCMS model to 
minimize material relocation costs, cell 
restructure, and fix machine cost with 
constraints of lower and upper bounds of cells 
capacity and constant number of cells. 
Mungwattana [17] examined the cell formation 
problem in his thesis. In his study, he 
considered a number of assumptions, such as 
multiple operational paths, batch movements of 
the parts, variable production costs, machine 
time capacity constraints, lower and upper 
bounds for cells capacity, number of cell 
constraint, demand variations, machine 
purchasing costs, cell restructuring cost, inter-
cell relocating cost and multi-task machines.  
Safaei and Tavakkoli-Moghaddam [18] 
developed a new model for solving the 
dynamic cell formation problem considering 
subcontracting with some assumptions, such as 
batch movement of the parts, inter-cell 
relocating, demand variations in different 
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periods, machine time capacity, maximum 
capacity of cells, existence of multitask 
machines, and parts returns by customers. They 
solved the proposed model after linearization 
by a branch-and-bound (B&B) algorithm. 
Arkat et al.  [19] proposed a mathematical 
model to simultaneously determine the 
formation of cells, cellular layout, and the 
operations sequence. The objective of the 
model was to minimize the total transportation 
cost of parts as well as minimizing makespan. 
In their approach, cells are prevented from 
being overlapped by imposing some 
restrictions on assigning machines to cells. 
Mahdavi et al. [20] examined an integrated 
mathematical model considering CF and cell 
layout simultaneously. In their paper, machine 
cells are allocated to a set of predetermined 
positions in the shop floor, and the machines 
are arranged in a linear form in each cell.  
Mohammadi et al. [21] presented a multi-row 
layout and developed a GA to solve an 
integrated CF and layout problem. They 
calculated the material handling cost on the 
basis of the actual location of machines on the 
shop floor regarding machine dimensions and 
aisle widths. In their approach, machines 
assigned to the same cell are arranged through 
a linear flow line, and the machine cells are 
placed on the shop floor as a multi-row layout. 
A few years later, these authors introduced a 
new layout framework called S-shaped layout 
that is a modified version of the multi-row 
layout [22]. They proposed a bi-objective 
model for integrated cell formation and layout 
problem. In their approach, machines are 
arranged through an S-shaped form according 
to their assignment to the cells considering 
machine dimensions, the width of the shop 
floor, and the aisle widths. A hybrid solution 
method, combining simulated annealing and 
dynamic programming, is developed for 
solving the problem [22]. 
 
2-2. Studies based on the solving methods 
Among the studies done in proposing different 
solving methods in a dynamic cell formation 
system design, the following studies are 
mentioned: 
Safaei et al. [23] proposed a nonlinear integer 
mathematical model for a CMS in a dynamic 
condition to overcome demand variations and 

product mix. The advantages of this model 
include the consideration of inter and intra-cell 
batch relocation, operational sequence, 
multiple paths, and multiplicity in a machines 
type. The main constraints in this model are the 
upper bound of cells capacity and time capacity 
of machines. They solved their model by 
merging a mean field annealing (MFA) 
algorithm with the simulated annealing (SA) 
algorithm, namely MFA-SA. They examined 
the obtained findings with SA and B&B 
methods, and demonstrated that the MFA-SA 
algorithm achieved better results. Askin et al. 
[24] proposed a four-step algorithm for solving 
the CF problem  considering demand variations 
and product mix. In the proposed model, 
existence of multiple operational paths is 
considered as an assumption. Phase 1 is related 
to assigning the activities to specific types of 
machines. Phase 2 is about assigning parts 
activity to a specific machine. Phase 3 is 
related to candidate cell determination to locate 
the machine. Phase 4 is about cell design 
enhancement and completion. 
Safaei et al. [25] solved the integer 
mathematical model related to the CF problem 
with a dynamic and uncertain environment 
employing fuzzy programming. In this model, 
the demand and time capacity of machines are 
considered as fuzzy forms. The objective 
function of the proposed model is to minimize 
the total inter- and intra-cell relocating costs, 
fixed and variable costs of machines, and cell 
restructuring costs. Tavakkoli-Moghaddam et 
al. [26] proposed a multi-criteria linear-integer 
model that includes information, such as cell 
capacity constraints, inter-cell relocation, multi 
operational paths, machines reestablishment in 
planning periods, existence of several single 
type machines, and operation sequence. The 
objective function for their model is to 
minimize the machine purchasing costs, inter-
cell relocation cost, part production cost and 
cell restructuring cost. They solved the model 
by SA, and demonstrated that, through 
sufficient time, more appropriate solutions are 
obtained by the B&B algorithm. Tavakkoli-
Moghaddam et al. [27] solved the 
Mungwattana’s proposed model by meta-
heuristic algorithms, such as SA, GA, and tabu 
search (TS) and, then, compared it with the 
B&B method. They demonstrated that SA 
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generated more appropriate solutions for 
solving this particular model. Bajestani et al. 
[28] proposed a multi-criteria programming 
model for a dynamic CF. They solved the 
proposed model employing a scatter search 
(SS) algorithm, and demonstrated that, for this 
problem, the SS algorithm outperformed multi-
criteria GA. Saidi-Mehrabad and Safaei [29] 
developed the dynamic CF model by 
considering the number of variable cells for 
sequential planning periods and, then, solved 
the model by the neural network in a 
deterministic condition. 
Bagheri et al. [30] developed a new 
mathematical model to simultaneously solve 
the cell formation, inter-cell layout problems, 
and operator assignment. The objectives 
included the minimization of inter- and intra-
cell movements, machine relocation cost, and 
operator-related issues. They employed an LP-
metric approach to obtaining the preferred 
solution and solved the problem using the B&B 
technique. Forghani et al. [31] formulated a 
simultaneous CF and layout problem and 
combined the quadratic assignment problem 
(QAP) with the two-dimensional facility layout 
problem. The QAP was employed to specify 
the intra-cell layout. while the inter-cell layout 
was represented by the continuous layout 
problem. They used a GA for solving the 
problem. Deep et al. [32] examined an 
integrated mathematical model for multi-period 
cell formation and part operation tradeoff in a 
dynamic cellular manufacturing system 
considering multiple part process route. Their 
approach concurrently generated machine cells, 
part families, and the optimum process route. 
They employed a simulated annealing-based 
genetic algorithm to solve the proposed 
problem. 
 
2-3. Studies considering the reliability  
The importance of appropriate reliability 
planning on CMS output performance has been 
studied by a number of researchers. Logendran 
et al. [33] compared both mean work in-
process and mean throughput time in a CMS 
and job shops considering machine breakdown. 
Their study indicated that performance at mean 
throughput time was better in the CMS only 
when preventive maintenance was performed. 
Therefore, it was concluded that reliability was 

an important design factor in the CMS. Das et 
al. [8] proposed a bi-objective model to 
incorporate reliability considerations into the 
CF problem. They assumed that each machine 
had a number of similar copies. When machine 
breakdowns occur, each machine type is 
replaced with another similar copy. In their 
approach, minimization of the total costs and 
maximization of the system reliability are 
considered as two objective functions. Saeed et 
al. [34] developed a binary integer 
programming model to deal with the CF 
problem considering alternative process 
routings for part types, configuration of 
machine cells, and machine reliability. They 
showed that the consideration of the machine 
reliability could make undesirable changes in 
the block diagonal machine-part matrix; 
however, it could reduce the overall cost of the 
cellular system. Chung et al. [35] proposed an 
efficient TS algorithm to solve the CF problem 
with alternative process routings and machine 
reliability considerations. 
Rafiee et al. [36] proposed an integrated cell 
formation and inventory lot-sizing problem to 
minimize some CMS costs. Furthermore, the 
process deterioration and machine breakdowns 
are considered in their approach to make the 
model more practical and applicable. Arkat et 
al. [37] used chance-constrained programming 
(CCP) to model cell formation problem 
considering machine reliability. Their proposed 
model minimizes the total CMS costs, 
consisting of intercellular and intracellular 
movement costs and machine breakdown costs. 
Alhourani [38] considered alternative process 
routings for parts and machines reliability 
together to solve the generalized GT problem; 
they can be of help in realistic selection of 
process routings for parts. In addition, other 
important production parameters, such as 
operations’ sequence, production volumes, 
machines’ capacities, duplicate machines, 
machine reliability and alternative 
preprocessing routing for parts should be 
considered all together in the machine cell 
formation problem. 
Reviewing the previous studies indicates that 
there is no paper to consider the simultaneous 
formation of cells and layout using exact 
information of inter- and intra-cell layouts 
under a dynamic condition and reliability 
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consideration. Therefore, using the notion of 
distance, a new establishment design in 
continuous space for machine arrangement in 
manufacturing cells and cells layout in a job 
shop level, considering cells reconfiguration 
and machines reliability in a dynamic 
condition, is presented in this paper. 

3. The Proposed Model 
The presented model with a number of 
assumptions, parameters, decision variables, 
objective function, and constraints is discussed 
below.  
 
3-1. Model assumption 
 Flow between machines in each period is 

determined. This number is obtained from 
the parts demand, operational paths for 
parts, and also batch size of parts 
transportation.  

 Parts are moved between and in the cells 
in batches. Largeness of the batches per 
product is known and constant for all 
periods. In addition, the size of the part 
batches for inter- and intra-cell relocations 
is assumed the same. 

 Time between failures follows exponential 
distribution. Therefore, the number of 
breakdowns for each machine follows a 
Poisson distribution with a known failure 
(i.e., breakdown) rate.  

 Machine breakdown cost is assumed to be 
known in advance and is based on its 
repair, install/uninstall costs.  

 The inter-cell relocation cost is based on 
the unit of distance and remains constant 
over time.  

 The machine relocation cost during the 
periods is constant and known for per 
machine. This cost includes opening, 
transferring, and resetting the machine. 

 The number of cells is known and constant 
over time. 

 There is one from each type of machine. 
 The maximum capacity of cells is known 

and remains constant over time.  
 The distance between two machines is 

calculated through a rectilinear distance. 
 Machines are considered as squares of 

equal area and supposed to have a unit 
dimension.  

 Excess inventory between the periods is 
zero; delayed orders are not allowed and 
demands per period must be supplied in 
that period. 

 
3-2. Sets 
݅, ݅ᇱ
= {1,2,… , ,݉} 

Index set of 
machines 

݆ = {1,2,… , , ݊} Index of parts 
݈, ݇, ݇ᇱ
= {1,2,… , ܿ} Index set of cells 

ℎ = {1,2,… , ,  Index set for time {ܪ
periods    

 
3-3. Model parameters 
  Demand for part type j in period hܦ

 ܤ
Largeness of batch for 
transportation of part type j 

௧ܥ
  

The intra-cell material handling 
cost for transporting part j per unit 
distance ($/unit) 

௧ܥ
  

The inter-cell material handling 
cost for transporting part j per unit 
distance ($/unit) 

  Cost of relocation for machine iܥ

ܴ 
 The operation number done on 
part j using machine i 

 Horizontal length of the job shop ܧ
(i.e., length of the job shop) 

 Vertical length of the job shop ܨ
(width of the job shop) 

ܵܲ 
Set of (i, j) pairs when ݆ܽ݅≥1 (set 
of elements for part-machine 
matrix that are not equal to zero) 

 Maximum number of machines ܯܰ
relocated per period. 

ߴ  
Coefficient of cost (or penalty) 
due to the existence of each 
exceptional part type j per period. 

ܰ Very large number 

݂ᇲ 
Number of trips for moving part 
type j between machines ݅  and ݅ᇱ 
in period h 

ܰ Positive big number 
ܣ ,   Binary random valuesܤ
λ୧ Failure rate for machine ݅ 

 ߚ
Breakdown unit cost for machine 
݅ 

 Pre-specified confidence level ߙ

  Number of breakdowns occurringߠ
for machine i in period ℎ 

j
ii hf   Number of travels for transferring 
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part type j between machines ݅ 
and ݅ᇱ  in period h which is 
calculated as follows: 
 

 






















1

10

ijji
j

jh

ijji

RRifB
D

RRif
j
hiif  

  
3-4. Decision variables 

ܺ = ቄ10 
If machine i in period h is 
assigned to cell k, 
Otherwise 

ܻ = ቄ10 If part j in period h is assigned to 
cell k, 
Otherwise 

ܼ = ቄ10 If machine type i relocates in 
periods h and (h+1) 
Otherwise 

ܷ = ቄ10 If 					 ܻ = 0  and  ܺ = 1 
Otherwise 

ܸ = ቄ10 If 					 ܻ = 1  and  ܺ = 0 
Otherwise 

ߞ = ቄ10	
If part j requires machine i  
Otherwise 

  Horizontal component of machineݔ
type i in period h 

  Vertical component of machine i inݕ
period h 

ଵ  Left side horizontal component of 
cell k in period h 

ଶ  Right side horizontal component of 
cell k in period h 

ଵݍ  Bottom side vertical component of 
cell type k in period h 

ଶݍ  Top side vertical component of cell 
type k in period h 

 
If both machines ݅ and ݅ᇱ are located in cell k in 
period h	(	ܺ	, ܺᇲ > 0), then an intra-cell 
movement will happen. Regarding distance 
between machine i (xi, yi) and machine j (xj, yj), 
which is calculated by: 
 
ݔ| − |ᇲݔ + ݕ| −  |ᇲݕ
The relocation cost of part j between machines 
݅ and ݅′ in period ℎ can be determined as 
follows: 
ᇲܥ
 = ݔ|) − |ᇲݔ + ݕ| − ௧ܥ(|ᇲݕ

   
On the other hand, if machines ݅ and ݅ᇱ are not 
located in the same cell in period h 

( ܺܺᇲ = 0		and	 ܺܺᇲᇲ > 0)  and in 
period h machine i was in cell k and machine ݅ᇱ 
was in cell ݇ᇱ, then an inter-cell movement will 
happen and the relocation cost of part  j  
between machines ݅ and ݅′ in period ℎ can be 
determined by: 
ᇲܥ
 = ݔ|) − |ᇲݔ

+ ݕ| − ௧ܥ(|ᇲݕ
  

 

 
3-5. Reliability of the CMS design 
As mentioned before, most of the studies 
exising in the literature assumed that machines 
are reliable and can process parts without any 
breakdown. However, one of the most 
important factors influencing the performance 
of the CMS is machine breakdowns that result 
in some manufacturing problems such as 
higher production costs and longer production 
period. Since machine reliability has a 
probabilistic nature, it is assumed that 
machines reliability follows an exponential 
distribution with a known failure (breakdown) 
rate. In addition, machine breakdown cost is 
assumed to be known in advance and is based 
on its repair, install/uninstall costs.  
Herein, in order to calculate the total 
breakdown cost, we define ߣ  as failure rate for 
machine݅ ߚ ,  as the breakdown unit cost for 
machine ݇ , and ߙ  as the pre-specified 
confidence level. Moreover,  ߞ  is defined as 
follows: 
 
ߞ
= ቄ10 

 

If part ݆ requires machine ݅ for 
processing 
Otherwise 

Considering ߠ  as the number of breakdowns 
occurring for the ݅th machine in period ℎ, the 
total breakdown cost (TBC) is calculated as 
follows: 
 

ܥܤܶ =ߞߠߚ



ୀଵ



ୀଵ

ு

ୀଵ

 
 

(1) 

   
In the proposed model, it is assumed that the 
time between failures follows exponential 
distribution. Hence, the number of breakdowns 
for each machine follows a Poisson distribution 
as follows where ܶ  represents the process 
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time of machine i for part j, and ܦ shows the 
amount of demand j in period h. 

     exp .
Pr

!

th

i jh ij i jh ij
ih th

th

D T D T


 
 


   (2) 

 
Due to the probabilistic nature of the time 
between machine breakdowns, calculating the 
exact amount of ߠ  is  impossible. Hence, 
based on the concept of  CCP, stochastic 
variable ߠ  in equation (1) can be replaced by 
߮	as a new deterministic variable, and the 
following chance constraint will be added to 
the model to ensure that the number of 
breakdowns never exceeds ߮ in at least ߙ of 
time. Hence, the following constraint can be 
defined below.  
 

(3) 
 

Pr൫ߠ ≤ φ൯ ≥  ߙ

Considering Eq. (2), Eq. (3) can be rewritten 
by: 
 

(4) ∑ ௫൫ିఒ 	ೕ 	்ೕ൯.(ఒ 	ೕ 	்ೕ)ഘ

ఠ!
ఝ
ఠୀ ≥

,݅∀				ߙ ݆  
where ߮ is an integer variable.  
On the other hand, as Eq. (1) related to the total 
breakdown cost is a nonlinear one, the 
following equation is defined to simplify the 
term of the problem: 
 

ܳ = ߞ × ߮  (5) 

where ߞ  is a binary variable and ߮  is an 
integer variable. Hence, ܳ  is an integer 

variable. The newly defined equation is 
equivalent to the following equation: 
 
ܳ ≥ ߮ − ൫1 − .൯ߞ ܰ (6) 

where ܰ is a large positive number. If ߞ 	takes 
1, this constraint becomes	 ܳ ≥ ߮ , and due 
to the minimized form of the objective 
function, 	 ܳ	will equal ≥ ߮  . Similarly, if 
ߞ  is 0, the constraint becomes ܳ ≥ −ܰ  
and again, because of the minimization of the 
objective function, ܳbecomes 0. Therefore, 
TBC is rewritten as follows: 
ܥܤܶ

= ܳ	ߚ



ୀଵ



ୀଵ

ு

ୀଵ

 

(7) 

Furthermore, Eq. (4) is a non-linear one and, in 
order to simplify the problem, this constraint is 
linearized. To do so, considering the left-hand 
side of this constraint is the cumulative Poisson 
probability with parameter	ߣ, the inverse form 
of the cumulative Poisson distribution function 
is used. Thus, this constraint is rewritten by: 
߮ ≥
ܦߣ)ଵିܨ ܶ	,   (ߙ

(8) 

where ିܨଵ  is the inverse of the cumulative 
Poisson distribution function and can be 
computed with the parameters of 	ߣ ,
,ܦ ܶ ,    .using Poisson tables 	ߙ	݀݊ܽ

 
3-6. Mathematical formulation 
With respect to the input parameters and 
variables, the presented nonlinear model for 
this problem is as follows: 

 

Min	 ݂ᇲ




ᇲୀଵ



ୀଵ



ୀଵ

ᇲܥ
 +

ு

ୀଵ

ܥܼ +	  ߴ .
൫ ܷ + ܸ൯

2
(,)∈௦



ୀଵ

ு

ୀଵ



ୀଵ

ு

ୀଶ

+ ܳߚ



ୀଵ



ୀଵ

ு

ୀଵ

 

(9) 

 ܺ = 1			,			݅ = 1,2,… ,݉


ୀଵ

		,					∀	ℎ (10) 

 ܻ = 1			,			݆ = 1,2,… , ݊


ୀଵ

				,						∀	ℎ (11) 

1 ≤ܺ ≤


ୀଵ

݇			,						ܯܰ = 1,2,… ,  ℎ (12)	∀			,		ܥ
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ܼܰ ≥ หݔ − (ାଵ)หݔ + หݕ − ,	݅∀			(ାଵ)หݕ ℎ <  ܪ
 

(13) 

ݔ| − |ᇲݔ + ݕ| − |ᇲݕ ≥ 1 
 (14) 

⎩
⎪
⎨

⎪
ݔ⎧ ≥ ଵ − ܰ(1 − ܺ)
ݔ ≤ ଶ + ܰ(1 − ܺ)
ݕ ≥ ଵݍ − ܰ(1 − ܺ)
ݕ ≤ ଶݍ + ܰ(1 − ܺ)

										∀݅, ݇, ℎ 

 

(15) 

⎩
⎪
⎨

⎪
⎧

ଵ ≥ 0
ଵݍ ≥ 0
ଶ ≤ ܧ
ଶݍ ≤ ܨ

																	∀݇, ℎ	 

 

(16) 

⎩
⎪
⎨

⎪
⎧

ଵ − ଶ ܣܰ+ + ܤܰ ≥ 0																							
ଶ − ଵ − ܣܰ − ܰ(1 − (ܤ ≤ 0											
ଵݍ − ଶݍ +ܰ(1 − (ܣ + ܤܰ ≥ 0											
ଶݍ − ଵݍ − ܰ(1 − (ܣ − ܰ(1 − (ܤ ≤ 0

0 ≤ ݇ < ݈ ≤ ܥ

 

 

(17) 

ܳ ≥ ߮ − ൫1 − .൯ߞ ܰ 
 

(18) 

߮ ≥ ܦߣ)ଵିܨ ܶ 	,  (19) (ߙ
 
The objective in the presented model is 
simultaneous decision-making to specify a cell 
for machines, part families, and facility layout 
under a dynamic condition. The model is a 
nonlinear model that aims to minimize the cost 
of inter- and intra-cell relocations of the parts, 
the relocation costs of the machines during 
periods, the costs related to the existence of 
exceptional parts, and the total breakdown cost. 
The third phase of the objective function 
attempts to minimize the number of 
exceptional parts. The quantity of 1/2 in this 
relationship is due to double calculation of 
decision variables when they are equal to 1. 
Finally, the last phase in the objective function 
attempts at minimizing the total breakdown 
cost due to the existence of unreliable machines 
described in detail in the previous section.  
The set of constraint (10) in the mathematical 
model leads to the assignment of per machine 
to a single cell. The set of constraint (11) leads 
to the assignment of each part to a single part 
family. The set of constraint (12) demonstrates 
the capacity of per cell that puts the number of 
machines in each cell in the quantity between 1 
and ܰܯ. The set of constraint (13) ensures  

 
that, by relocating machine type i during 
periods h and (1+h), variable ܼ  obtains the 
quantity one. The set of constraints (14) 
prevents machines from overlapping. As 
mentioned before, the machines are assumed as 
squares with a unit dimension. The set of 
relationships (15) ensures that each machine 
must relocate the space of its corresponding 
cell. The set of relationships (16) ensures that 
cells are located in the space of a job shop; 
moreover, to control the cells which are in the 
space of the job shop, the set of relationships 
(17) is developed to control the cells which are 
in space of the job shop. The set of Constraints 
(18) and (19) is related to reliability 
consideration in CMS, as explained before in 
Section 3.5.  
 

4. The Proposed Genetic Algorithm 
Several algorithms have been applied in the 
context of a DCMS design to approach the 
appropriate design. One of the most popular 
forms of these designs is the genetic algorithm 
(GA). This section attempts to examine some 
aspects of this algorithm and demonstrates its 
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application in a DCMS design. The GA is 
known as the most popular meta-heuristic 
algorithm and is a component of evolutionary 
calculation and is a subset of artificial 
intelligence. The primary idea of this algorithm 
is derived from the Darwin’s evolutionary 
theory and its application is based on natural 
genetics. 
In a way that the GA searches the solution 
space, not only the better quality solutions are 
acceptable, but also the solutions with lower 
fitness are acceptable, leading the algorithm to 
escape from local optimum points. The GA 
varies in many ways with traditional 
optimization methods. In this algorithm, design 
space should be converted to genetic space. 
Therefore, we deal with a series of coded 
variables. Another major difference between 
the GA and other optimization methods is that 
the GA works with a population or a set of 
points at a certain moment, while traditional 
optimization methods operate only in a 
particular point. A distinguishing feature of the 
GA is that the principle of processing in this 
algorithm is random and is guided towards the 
optimum place. Generally, the differences 
between the GA and other optimization 
methods can be expressed as follows: 
 The GA does not search the solution in a 

single point and searches the solution in 
parallel.  

 The GA does not use the deterministic 
rules and uses probabilistic rules.  

 The GA is based on coded variables, 
unless in cases whose variables are 
illustrated as real numbers.  

 The GA does not require backup 
information. It only determines the 
members of objective function and the 
fitness of path in the search space. 

By applying the GA, the following steps are 
necessary:  

 Representing an appropriate solution 
structure.  

 Obtaining appropriate initial solutions in 
a population size.  

 Employing appropriate genetic operators 
(i.e., mutation and crossover) to obtain 
new solutions.  

 Selecting population of the next 
generation from parent and offspring 
chromosomes.  

 Evaluating chromosome measure (i.e., 
fitness function)  

 Specifying the stopping criteria  
The algorithm in two phases is used to solve 
the model of this problem. The first phase is 
related to machine assignment to 
manufacturing cells and layout determination, 
and the second phase is about determination of 
part assignment to part families. The flowchart 
process of the algorithm is provided in Fig. 1. 
 
4-1. Parameter tuning 
In this paper, the Taguchi experimental design 
method is applied to calibration of the 
parameters of meta-heuristic algorithms. 
Taguchi introduced this method in early 1960s. 
The orthogonal arrays of the method are used 
for the evaluation of a large number of factors 
with a few experiments. In the current problem, 
the L9 design of the Taguchi method is applied 
to the algorithms by using the Minitab 16.2 
software. The Taguchi method aims to 
minimize variances of quality characteristics 
obtained from S/N ratio (Taguchi et al., 2000). 
The quality characteristic of this paper is 
considered as a relative percentage deviation 
(RPD), which is considered to exchange 
objective function values to non-scale. Hence, 
"The smaller-the better" type is chosen. The 
RPD is computed as follows:  
 
ܦܴܲ = |ைିை್ೞ|

|ை್ೞ|
× 100  (20) 

 
where ܱܾ݆௦௧  and ܱܾ ݆  are the best achieved 
objective value for a special instance and the 
objective value obtained for the i-th 
experiment, respectively. 
 
ܦܴܲ = |ைିை್ೞ|

|ை್ೞ|
× 100  (20) 

 
where ܱܾ݆௦௧  and ܱܾ ݆  are the best achieved 
objective value for a special instance and the 
objective value obtained for the ݅th experiment, 
respectively. 
 
ܦܴܲ = |ைିை್ೞ|

|ை್ೞ|
× 100  (20) 

 
where ܱܾ݆௦௧  and ܱܾ ݆  are the best achieved 
objective value for a special instance and the 
objective value obtained for the ݅th experiment, 
respectively. 
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Also, the signal-to-noise ratio for “the smaller-
the better” characteristic is calculated by: 
 

S/N = −10	log	(ଵ

∑ ଶݕ
ୀଵ ) (21) 

 
where ݕ denotes the response value in the i-th 
replication and ݊  denotes the number of 

replications in experiments’ replications. We 
incorporate three factors that can have 
significant effects on the proposed evolutionary 
algorithms. The considered levels of the 
parameters are listed in Table 1. 

 
 

 
Fig. 1.  Flowchart of the genetic algorithm 

 
Tab. 1. Considered levels of parameters of the modified GA 

Modified 
GA 

Parameter Level 
1 

Level 
2 

Level 
3 

Crossover 0.60 0.70 0.80 
Mutation 0.10 0.15 0.20 

Population 
size 50 70 90 

 

Fig. 2 shows the level of control factors versus control factors. A larger value of the S/N ratio in the 
graphs is more desirable. 
 

 

Fig. 2. Mean S/N ratios for the proposed GA 
 
4-2. Solution view 
One chromosome coding is required for the GA 
to point to solutions to the problem. The way 
that chromosomes are viewed determines how 
a problem is formulated in a form of an  

 
algorithm and what genetic operators are 
applied. Each chromosome is formed from 
genes that can be shown as binary and integer 
numbers or combination of characters that is a 
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coded form of a feasible solution (appropriate 
or inappropriate) from the problem.  
The considered chromosome for the first step 
of this problem includes a matrix with H rows 
and M columns that can be divided into the 
following sub-matrix. 
 Sub-matrix of Z is related to assignment of 

machines to manufacturing cells. This sub-
matrix consists of H (i.e., number of 
periods) rows and M (i.e., number of 
machines) columns. Each element of this 
matrix is a number between 1 and C (i.e., 
number of cells), and element ܼ	represents 
the number of cells that includes machine 
type i in period h.  

 Sub-matrix X is related to the horizontal 
component of machines’ location. This sub-
matrix also consists of H rows and M 
columns. With respect to the machines’ 

dimension (1×1), one integer is sufficient to 
familiarize each of horizontal and vertical 
components of the machines. Each element 
of this matrix is a number between 1 and E 
(i.e., length of the job shop), and element 
ݔ  represents the horizontal component of 
location that includes machine i in period h. 

 Sub-matrix Y is related to the vertical 
component of machines’ location. This sub-
matrix also consists of H rows and M 
columns. Each element of this matrix is a 
number between 1 and F (i.e., width of the 
job shop) and element ݕ  represents the 
vertical component of location that includes 
machine i in period h.  

Figs. 3 and 4 illustrate the general and detailed 
views of the chromosome structure related to 
machines alignment to manufacturing cells, 
respectively.

 
 

[[ܼ] [X] [Y]] 
Fig. 3.  General view of the chromosome structure 

 
 ࡹ࢟ … ࢟ ࢟ ࡹ࢞ … ࢞ ࢞ ࡹࢆ … ࢆ ࢆ
⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ 
 ࡹࢎ࢟ … ࢎ࢟ ࢎ࢟ ࡹࢎ࢞ … ࢎ࢞ ࢎ࢞ ࡹࢎࢆ … ࢎࢆ ࢎࢆ

This part assigns 
machines to cells 

This part represents 
the x components of 

machines 

This part represents 
the y components of 

machines 
Fig. 4. Detailed view of the chromosome structure. 

 
The considered chromosome for the first second of this problem includes a matrix with H rows and N 
columns. Its detailed structure related to parts alignment to part families is shown in Fig. 5. 
 

 ࡹᇱࢆ … ᇱࢆ ᇱࢆ
⋮ ⋮  ⋮ 

 ࡹࢎᇱࢆ … ࢎᇱࢆ ࢎᇱࢆ

Fig. 5. Detailed view of the chromosome structure 

4-3 Obtaining the primary solutions 
The elements of matrix Z are obtained 
randomly from within the numbers of 1 to C. 
The elements of matrices X and Y are selected 
in a way that machines are not overlapped; in 
this way, numbers of a column from X and Y 
are not simultaneously equal to another column 
of X and Y. The elements of matrix ݖᇱ are also 
obtained randomly from within the numbers of 
1 to C. 

 
4-4 Genetic operators 
A genetic operator is used to produce a new 
generation of offspring. 
 
4-4-1. Mutation 
In the proposed GA, in sections of machine 
assignment to manufacturing cells, five types 
of the operator are used simultaneously. These 
operators are as follows:  
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 Machine relocation in cells: This operator is 
on matrix Z, that is, substituting two 
numbers from two columns in a row of 
matrix Z.  

 Relocation of two machines: This operator 
is on matrices X and Y simultaneously. 
Selecting two columns from a row of 
matrices X and Y and substituting the 
numbers of these columns in the same row, 
the location of those machines in considered 
period will change.  

 Relocation and cell change of two 
machines: This operator is on matrices Z, X 
including two previous operators 
simultaneously. 

 Approaching one machine to another: This 
operator is on matrix X or Y. One of the 
columns from matrix X or Y is selected and 
changes to the numbers of another column 
from the same matrix with one unit 
difference. 

 Assigning the machines with more flow to a 
single cell: This operator is on matrix Z. 
With respect to the numbers of flow matrix, 
machines with more relations are assigned 
to a single cell. 

In the section concerning part assignment to 
part families in this algorithm, substitution of 

two numbers from two columns of a row in 
matrix	ܼᇱ is done. 
In both parts of the solution view in this 
algorithm, the selected crossover means 
substitution of a part of a row from parent with 
the same part of the same row of another parent 
and generation of two offspring similar to the 
two parents. 
 
4-4-2.Crossover  
In the crossover operator, two individuals are 
randomly chosen to act as parents so as to 
create one or more offspring. There are 
different methods to combine variable values 
of given parents. The current study applies 
parameterized uniform crossover. It selects the 
first parent amongst the best individuals in the 
population, while the other one is chosen from 
the whole population, randomly. Then, a real 
random number at the interval [0,1] for each 
row is produced. If the random number is 
larger than a predetermined threshold value, 
called crossover probability (CProb), then the 
allele of the first parent is applied. Otherwise, 
the allele of the second parent is applied to the 
offspring generation. An example process of 
crossover is provided in Fig. 6.  
In this example, offspring 1 inherits the gene of 
parent 1 with probability of 0.5 and inherits the 
gene of parent 2 with probability of 0.5. 

 
Parent 1 

               
               

Parent 2 
               
               

 Real random numbers at the interval [0,1] 
.  .  .  . ૡ . ૡ . ૠ .  .  .  . ૠ .  .  . ૠ . ૢ .  

               
Child 1 

               
               

Child 1 
               
               

Fig. 6.  Example process of the crossover 
 
4-5. Selecting the next generation 
Selecting the parents for producing next 
generation plays a major role in the genetic 
algorithm. The aim is to select the best 

chromosomes (i.e., the solutions that are better 
than others) for entering to the next generation 
or producing new generation. Generally, each 
chromosome with a particular probability has 
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an opportunity to produce or enter to the next 
generation. Therefore, chromosomes with high 
fitness should have more probability to be 
selected. Several methods have been proposed 
for selecting the next generation that are in two 
categories: probabilistic and non-probabilistic. 
Probabilistic methods contain roulette wheel 
selection, scaling, and grouping. Non-
probabilistic methods include competitive 
selection and elite models. Roulette wheel 
mechanism is used in this study. In this 
method, members are selected based on their 
relative consistency. In other words, a roulette 
wheel method selects the next generation’s 
members to the number of population, giving 
more probabilities to more appropriate 
chromosomes and generating the random 
number between zero and one. 
 
4-6. Criterion for evaluating chromosomes  
The fitness function is an implication of the 
objective function. In the GA, the fitness value 
for each chromosome is equivalent to the value 
of the objective function for a solution. For 
instance, if the objective in a cellular 
manufacturing problem is to minimize the sum 
of costs according to the problem model, an 
offspring will be acceptable when it more 
minimizes the cost function relative to its 
parents. Also, in this problem, fitness for each 
chromosome is calculated based on an 
objective function. 
 
4-7. Stopping condition 
To stop the GA and present a final solution, 
stopping criterion should be considered. The 
stopping criteria that are mainly used are as 
follows:  
 The maximum specified numbers of 

generation: if the number of generations 
passes the maximum specified numbers of 
generation, algorithm will end. 

 Convergence of population: in broad 
terms, GA attempts to converge the 
population to a single population. If the 
current population converges to a single 
solution, algorithm will end. 

 Reaching a specified solving time.  
The criterion of the maximum specified 
numbers of the generation is used here. 
 

5. Particle Swarm Optimization 
(PSO) 

PSO is an evolutionary computation technique 
developed by Kennedy and Eberhart [39]. This 
particle swarm concept was inspired via social 
behavior of bird flocking and fish schooling. 
The social behavior is modelled as a PSO 
algorithm to guide a population. This 
population consists of a set of particles moving 
towards the most promising region of the 
search space which is called swarm. The 
general procedures of PSO are as follows: 
 
5-1. Initialization  
A population (A) of potential solutions is 
randomly generated which is called particles, 
and each particle is assigned to a randomized 
velocity. The population size is dependent on 
the problem.  
 
5-2. Evaluating and updating the best 
positions 
The desired optimization fitness function is 
computed as follows: 
 Compare the fitness of each particle with its 

best position, if the current is better, update 
the best position. 

 Compare the best position of each particle 
with the best global one, if the best position 
is better, update the best global one.  

 
5-3. Velocity update  
The particles are flown through a hyperspace 
via updating their own velocities. The velocity 
update of a particle is dynamically adjusted 
based on its own past best path and those of its 
companions. Furthermore, the particle updates 
its velocity and position by the following 
equations: 

 
 

1 1

2 2

( 22 )
                    

ne w old o ld
id id id id

o ld
gd id

V W V c rn d P X

c rnd P X

      
 
     
 

new old new
id id idX X V    (23) 

where new
idV is the particle new velocity,  old

idV
represents the current particle velocity, idP
shows the best previous position of particle i in 
dimension d, and 

gdP is the best position in 
dimension d found by all particles till now. W 
indicates the inertia weight; 1c  and 2c are 
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learning factors. new
idX is the new particle 

(solution) position, and old
idX is the current 

particle position in the d-th dimension. 1rnd
and 2rnd are random numbers between 0 and 1 
which indicate the stochastic element of the 
PSO. 

In this paper, the Taguchi experimental design 
method, as explained before in section 5.1, is 
applied to calibrate the parameters of PSO 
according to Table 2. Fig. 7 shows the level of 
control factors versus control factors. A larger 
value of the S/N ratio in the graphs is more 
desirable.

 
Tab. 2. Considered levels of parameters of PSO 
 Parameter Level 

1 
Level 

2 
Level 

3 

PSO 
 ଵ 1 1.5 2ܥ
 ଶ 1 1.5 2ܥ

Inertia weight 0.3 0.6 0.9 
 

 
Fig. 7. Mean S/N ratios for the proposed PSO 

 

5-4. Termination 
Stop the algorithm if the stopping criterion is 
met; otherwise go to second step (5.2). In this 
paper, the stopping criterion is set when 
reading the maximum number of iterations. 

6. omputational Results 
In this section, in order to validate the proposed 
model, a numerical instance is represented and 
solved through GAMS. The information of the 
problem is given in Tables 3-5. 

 
Tab. 3. Process of generating parameters for the problem 

value Parameters 
U[10,30] ܤ 

5 ݉ 
8 ݊ 

U[5,10] ܥ௧
  

U[20,40] ܥ௧
  

 ܧ 6
 ܨ 6
 ܯܰ 4

ܥ = ܷ[5000,7000] 
 
After two hours of lunching the program, the 
solution has been obtained. In the first period, 
machines 1, 2, and 5 and parts 1, 2, 3, 5, and 8 
are relocated in cell 1 and machines 2 and 4 
and parts 4, 6, and 7 are relocated in cell 2. In 
the second period, machines 2 and 4 are 

relocated in cell 1 and machines 1, 3, and 5 are 
relocated in cell 2. In this period, parts 7, 2, and 
8 are relocated in cell 1 and parts 1, 3, 4, 5, and 
6 form the part family of cell 2. Layouts for 
machines are illustrated in Figs. 8 and 9. The 
special features of this algorithm make us 
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unable to consider this algorithm as a simple random searcher. 
 

Tab. 4. Demand of parts in the first and second periods 
Demand of  

period 2 (ܦଶ) 
Demand of period 1 (ܦଵ) Part number 

110 325 1 
378 298 2 
429 129 3 
316 316 4 
402 409 5 
109 521 6 
571 580 7 
362 180 8 

 
Tab. 5. Reliability information for machines 

Breakdown	Cost ߣ Machine 
1000 0.0239 1 
1200 0.0317 2 
1500 0.0204 3 
1400 0.0018 4 
1000 0.0112 5 
1300 0.0264 6 
1200 0.0029 7 
1100 0.0175 8 

The part-machine matrix of the problem is given below, in which the average of operation for this 
matrix is set to 3. 
 

 ଼   ହ ସ ଷ ଶ ଵ 
 ଵ 0 0 1 3 0 1 2 0ܯ
 ଶ 3 2 0 0 0 2 1 3ܯ
 ଷ 2 0 2 0 2 3 0 0ܯ
 ସ 0 1 3 1 1 0 0 2ܯ
 ହ 1 3 0 2 3 0 3 1ܯ

Machine-part matrix for problem 5×8 
 
 

 
Fig. 8. Designed by solving the model in the first period 

Cell 2 
Cell 1 

2 4 

3 5 1 
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Fig. 9. Designed by solving the model in the second period 

 
7. Comparison of the Results 

The proposed GA is coded by Visual Basic 
(VB) and run by a Pentium 4 personal 
computer (PC). The number of populations, 
number of replications for generations, 
mutation rate, and crossover rate for the 
proposed GA are considered 20, 100, 0.25, and 
0.85, respectively. After two hours, the GA 
stops and the best obtained solution is reported. 
The number of cells for the problems with 3 to 
7 machines is considered 2 and also considered 
3 for the problems with 8 to 13 machines. In 
order to demonstrate the efficiency of our 
proposed GA, several small/medium- and 
large-sized problems are resolved via PSO and 
GAMS. Gap between the results, shown in 
Table 6, is calculated by:  
 

Gap =
|Objୣ୲ୟି୦ୣ୳୰୧ୱ୲୧ୡ − Objୱ୭୪୳୲୧୭୬.ୠୣୱ୲|

|Objୱ୭୪୳୲୧୭୬.ୠୣୱ୲|
× 100 

where Objୱ୭୪୳୲୧୭୬.ୠୣୱ୲  denotes the optimal 
solution of the mathematical programming 
model if it exists; otherwise; it is the best 
solution obtained from all meta-heuristic runs. 

Objୣ୲ୟି୦ୣ୳୰୧ୱ୲୧ୡ  shows the best obtained 
solution by each method. 
For better understanding the differences 
between meta-GA, PSO, and GAMS, Fig. 10 
represents the relative gap between the GA and 
PSO solutions, and Fig. 11 indicates fitness 
function trend lines; finally, Fig. 12 represents 
the growth of computational time for different 
method solutions. Considering these values, it 
can be concluded that GAMS solver cannot 
find feasible solutions to the large-sized 
problems. Furthermore, the proposed GA can 
obtain better solutions in shorter time in 
comparison with PSO. 

 

 
Fig. 10. Relative gap between the GA and 

PSO solutions 

Fi
tn

es
s F

un
ct

io
n 

Number of iterations 

Cell 2 Cell 1 

1 4 

3 5 2 

Instance number 

GA 
PSO 

Re
la

ti
ve

 g
ap

 



192 Amir-Mohammad Golmohammadi, 
Mahboobeh Honarvar*, Hasan Hosseini-
Nasab & Reza Tavakkoli-Moghaddam 

Machine Reliability in a Dynamic Cellular 
Manufacturing System: A Comprehensive Approach to 
a Cell Layout Problem 

 

International Journal of Industrial Engineering & Production Research,June 2018, Vol. 29, No. 2 

Tab. 6. Comparison of the obtained results  

 

 
Fig. 9. Growth of computational time for different method solutions 
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handling cost was obtained on the basis of the 
actual location of machines and cells on the 
shop floor regarding dimensions of equal-sized 
machines. Handling both inter- and intra-
cellular materials using batch sizes for 
transferring parts was taken into account for 
calculating the transportation cost. The 
transportation cost is calculated on the basis of 
the distance traveled according to center-to-
center interval among machines through a 
rectilinear distance. Furthermore, in the 
presented model, cells were configured in 
flexible shapes during the planning horizon 
considering the capacity of cells in each period. 
Due to NP-hardness of the problem, a genetic 
algorithm was then developed. The 
performance of GA was then demonstrated via 
comparing the results with those of PSO and 
GAMS considering several small/medium- and 
large-sized problems with respect to the 
computational time and objective value. The 
results demonstrated that the proposed GA 
could find better solutions in shorter time in 
comparison with PSO. In addition, finding the 
exact solution of the problems with more than 
13 machines via GAMS solver is impossible. 
For future research, the following areas can be 
attractive and the present study can provide the 
necessary background for researchers who seek 
to work in these areas: 
 Considering multi-operational paths in 

the model can provide a model close to 
the real situation of job shop; in the 
presented model, the operational paths 
are considered constant. 

 Considering unequal dimensions for 
machines, in the proposed model, 
machines are considered as squares of 
equal area with unit dimension. In order 
to obtain more appropriate schema from 
the space of a job shop, dimensions of 
machines can be considered as input 
parameters. 

 Developing probabilistic models and 
fuzzy models factors (e.g., available 
machines, operation time, costs, 
transportation time, and demand for each 
part) can be considered as fuzzy or 
probabilistic. 

 Incorporating production data such as 
setup times and holding inventory between 
periods and also integrating the proposed 

model with scheduling problem can make the 
model more realistic. 
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